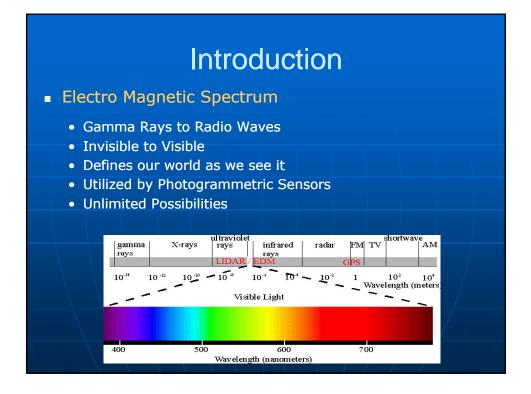
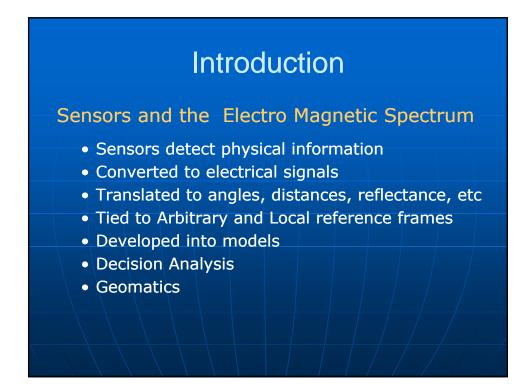

Introduction

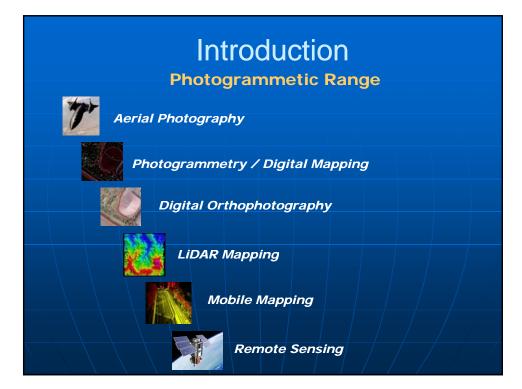

Photogrammetry

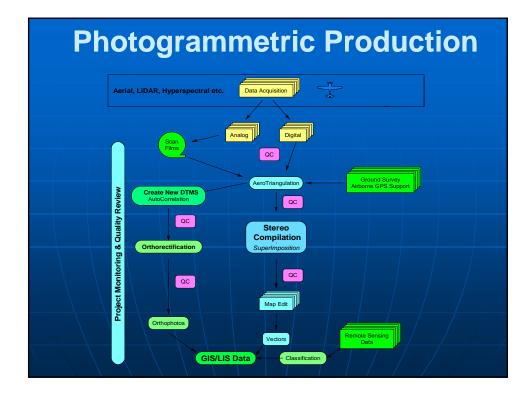

- Photos light
- Gramma drawing
- Metron *measure*

Basic Definition

"The art and science of obtaining reliable measurements by means of photographs."

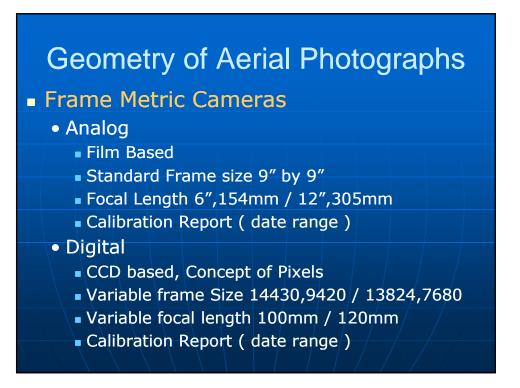
<section-header><section-header>



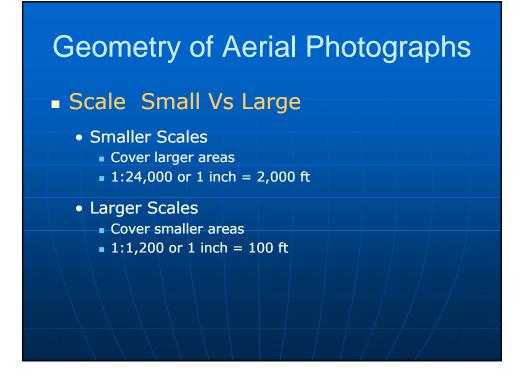

Introduction

Photogrammetric Future

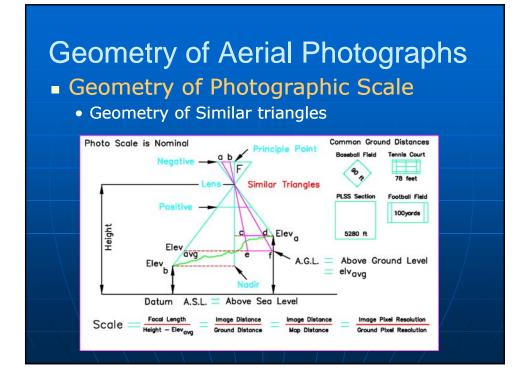
• UAV + Sensor Combination & Fusion

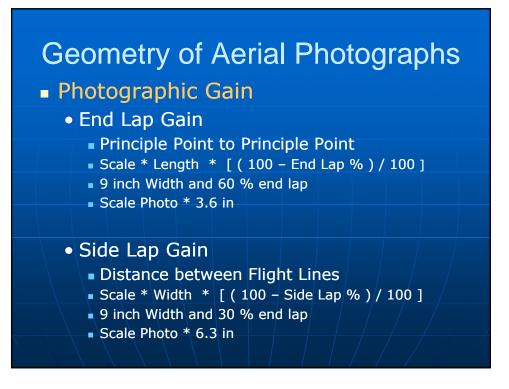


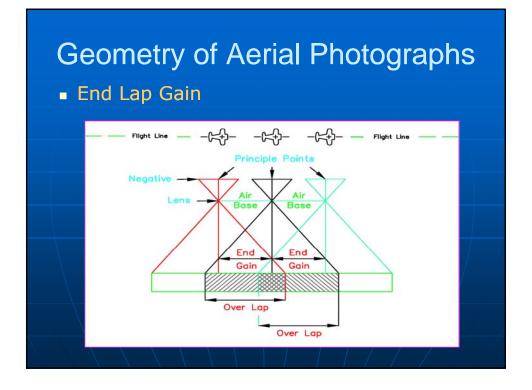

Geometric Key Concepts

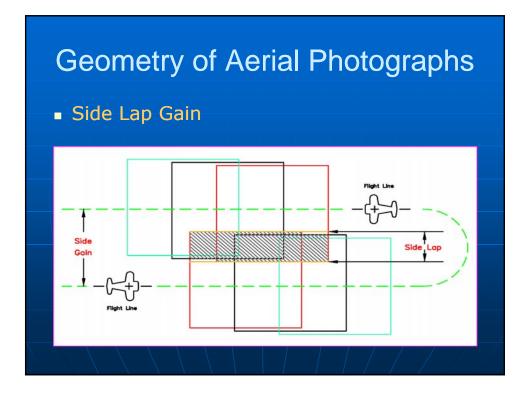

ScaleC-Factor	S = f / H Cf = H / CI					
 Relief Displacement 	$h = d * H / r_{2}, d = r_2 - r_1$					
 Scale Choice 	Horizontal vs Vertical Requirements					
	Scale $_{map}$ = Scale $_{photo}$ / Enlargement Scale $_{map}$ = f / CI * C-factor					
 End Lap Gain 	S * L * [(100 – End Lap %) / 100]					
 Side Lap Gain 	S * W * [(100 – Side Lap %) / 100]					
 Min Number of Models 	(Length / End Gain) round up					
 Min Photos per flight Line 	e(Length / End Gain)round up + 1					
Min Number of flight Line	s (Width / Side Lap Gain) round					
Ground Control	Vert = 3+1 Horiz = 2+1					
 Target Size 	W= ps*0.002, Legs = 12*W					

Photogrammetric Photography


- Frame Metric Cameras
- Vertical Photography
 - Image Plane Parallel to the Ground, Nearly
 - Optical Axis Perpendicular to the Ground
 - Contains 3D Information
- Perspective based
 - All Light Rays converge at the lens
 - Weakest measurement along the optical axis
 - Heights require rigid constraints
- Overlapping Photography
 - Stereoscopic Coverage
 - (end lap, side lap)

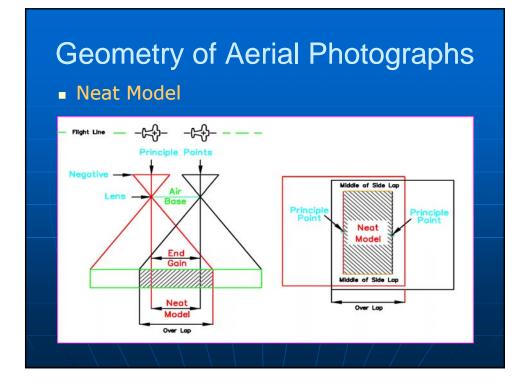



- Scale Maps vs. Aerial
 - Maps
 - Scale is constant
 - No relief displacement
 - Orthographic or Planimetric Projection
 - Aerial Photos
 - Scale varies
 - Topographical Relief displacement is present
 - Aerial photos have nominal scale
 - Varies with Topographical Relief
 - Perspective Projection



Photographic Over Lap

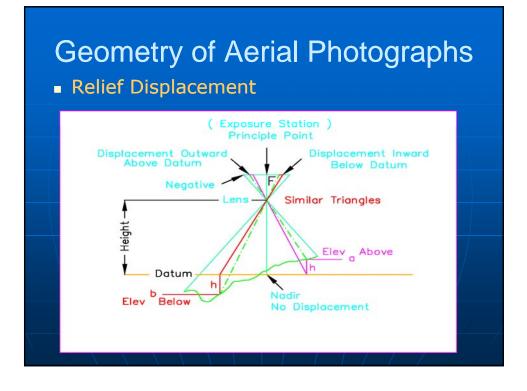
- Forward Over Lap
 - Over Lap between Photographs along the Flight Line
 - Provides Stereoscopic Coverage
 - 3D Viewing and measuring
 - Provides small over lap between alternate photographs for extending control through the Analytical of process AeroTriangulation
- Side Lap
 - Side lap Between the Flight Lines
 - Allows extending control to successive flight lines through the Analytical process of AeroTriangulation

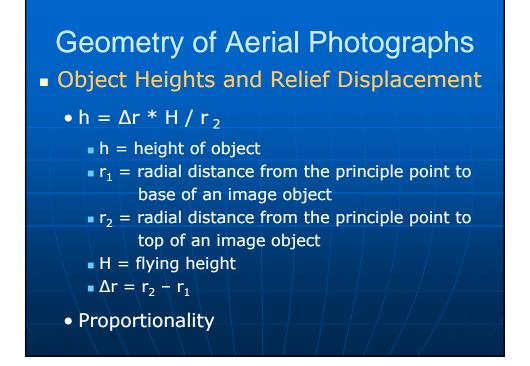


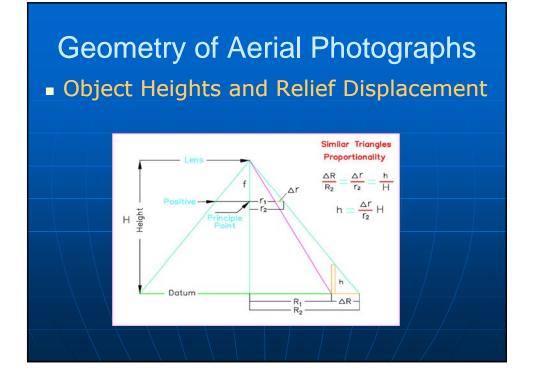
Neat Model

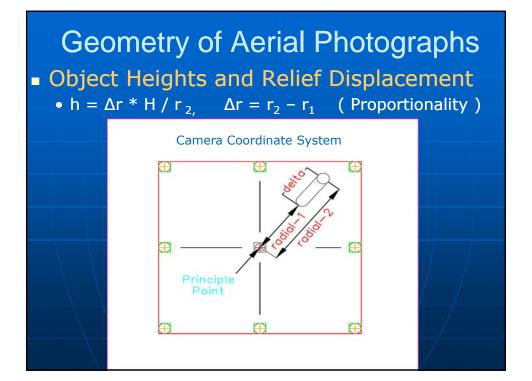
 The stereoscopic area between adjacent principle points, (Exposure Stations), and extended out sideways in both directions to middle of the side laps

 If no side laps exist, one can extend to no more then 1" from the extents of the dimension of the Frame on either side

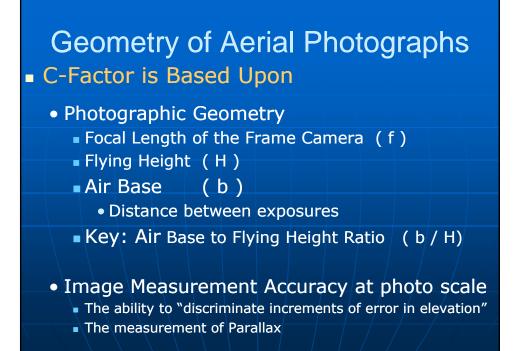



Relief Displacement


 The radial distance between where an object appears in an image to where it actually appears on the Datum, (ground)


Causes

- Camera Tilt and Earth Curvature Minor
- Topographic Terrain Relief or Elevation Differences Major
 - Displacement is a radial distance outwards for elevations above the Datum
 - Displacement is a radial distance inwards for elevations below the Datum
- The nadir point on the datum, opposite the principle point, (Exposure Station), is always free of any relief displacement.





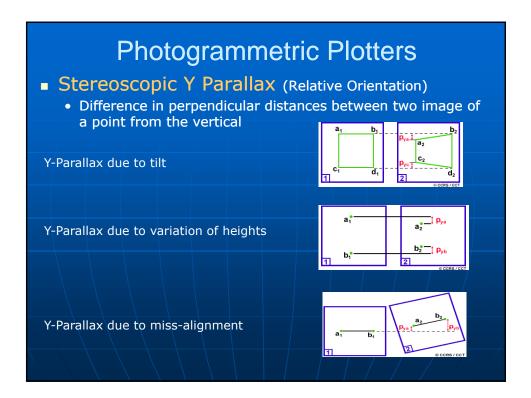
Geometry of Aerial Photographs • C-factor

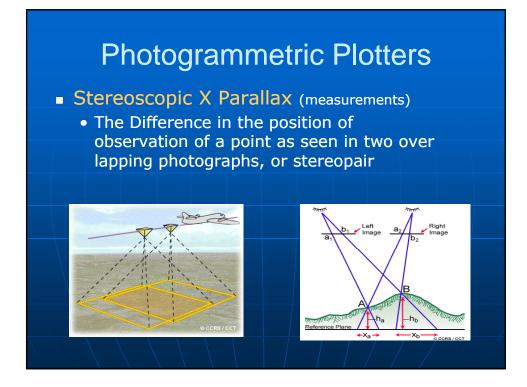
- Is an empirical value that defines the ability to accurately measure the vertical component in a stereo model using a given type of photogrammetric instrumentation.
- Vertical measurements depend not only on the photogrammetric instrumentation, but also upon the nature of the terrain, the camera and its calibration, the resolution quality of the photography, the density and accuracy of the ground control

Photogrammetric PlottersStereoPlotters

Softcopy

- Fifth Generation
- All digital environment on computer
- C-Factor=2000, resolution = 3-5 µms, Enlargement 7x
- Analytical
 - Fourth Generation
 - Optical and Computer environment
 - Diapositives
 - C-Factor=2000, resolution = 3-5 µms, Enlargement 7x


Analog


- Third Generation
- Optical, Scribing and Computer environment
- Diapositives
- C-Factor=1600, resolution = 10-15 µms, Enlargement 6x

Photogrammetric Plotters

Stereoscopic Parallax

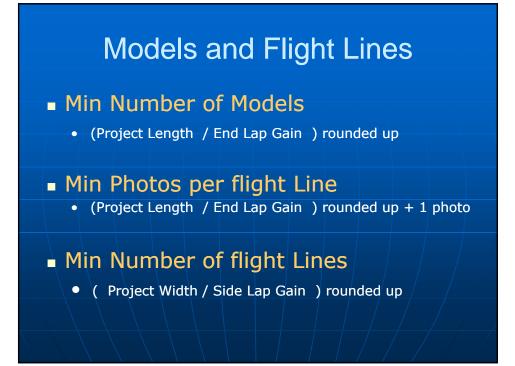

- The displacement of an object caused by a change in the point of observation is called parallax.
- Stereoscopic parallax is created by overlapping aerial photographs of the same object from different points of observation.
- Overlapping aerial photos are referred to as stereopairs and can be used to measure object height.
- Stereopairs are utilized to interpret objects, locate objects and determine object heights. They contain Y and X Parallax.

Photo Scale Selection

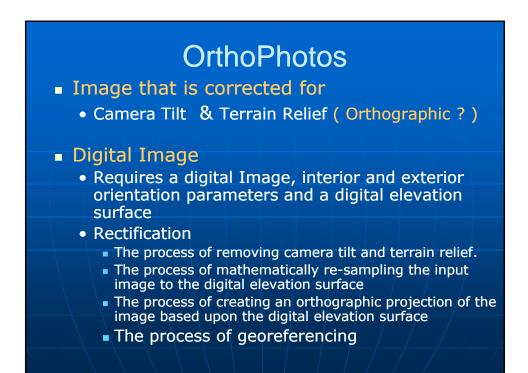
- Horizontal Requirements
 - Photographic Enlargement Factors
 - Stereoplotter based
 - Scale map = Scale photo / Enlargement Factor
- Vertical Requirements
 - Specified by Contour Interval
 - Use C-factor to find Flying Height
 - Scale map = focal Length / Contour Interval * C-factor
- Select the larger of the two derived scales

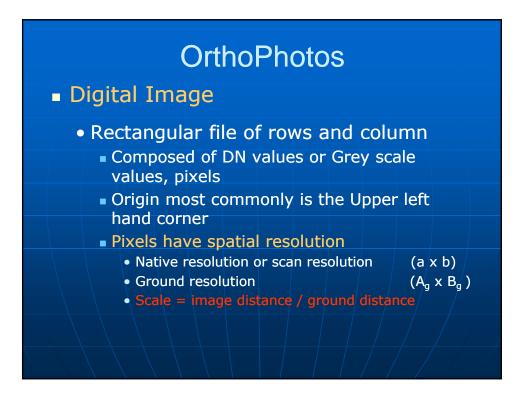
Ground control

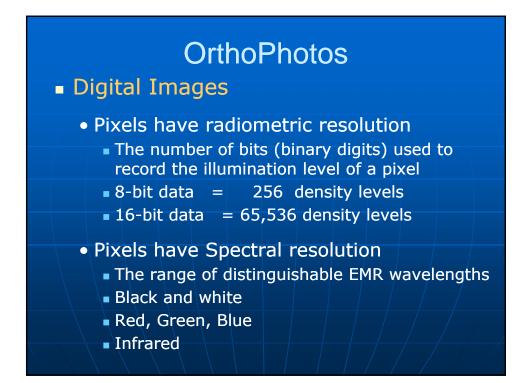
Vertical - Leveling the model

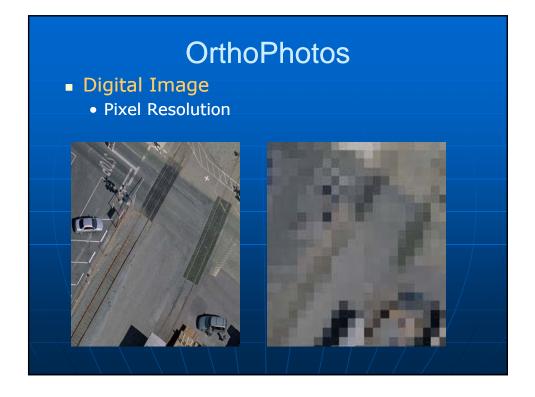
- Minimum of 3 Vertical points
- 1 more as a check (Redundancy)
- Horizontal Scaling the model
 - Minimum of Horizontal 2 points
 - 1 more as a check (Redundancy)

Minimum to Control a Model

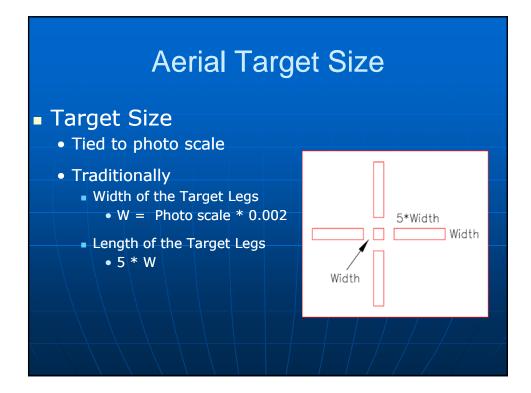

- 3 points vertical and Horizontal
- 1 more as a check (Redundancy)

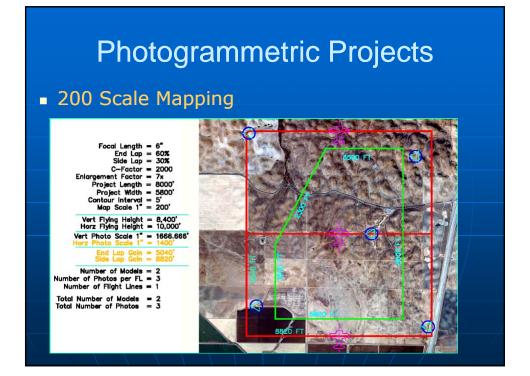

Ground Control

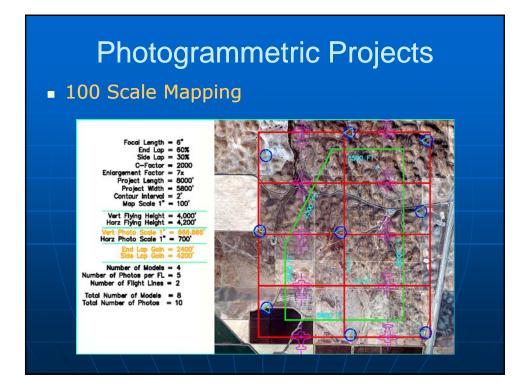

- A Single Model In Practice
 - 4 points vertical and Horizontal
 At or near the corners
 - 1 as a check in the middle

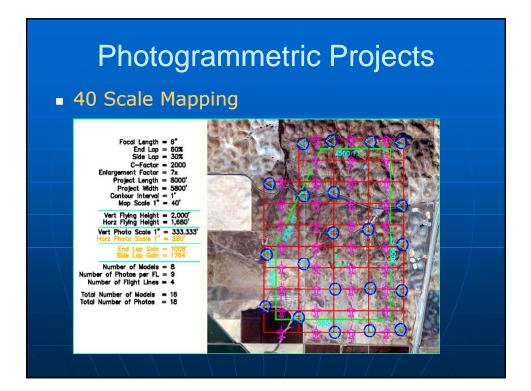

For Blocks In General

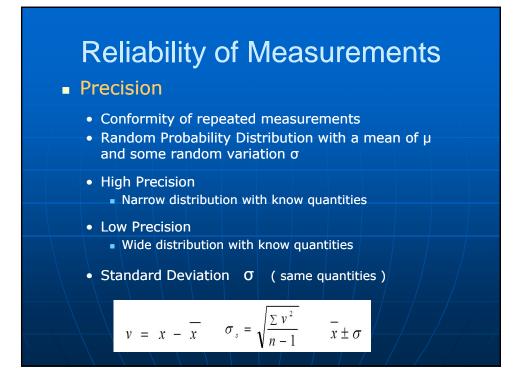
- 1 vertical every 2 models edges
- 1 Horizontial every 4 models edges
- Supplamental Vertical on the interior

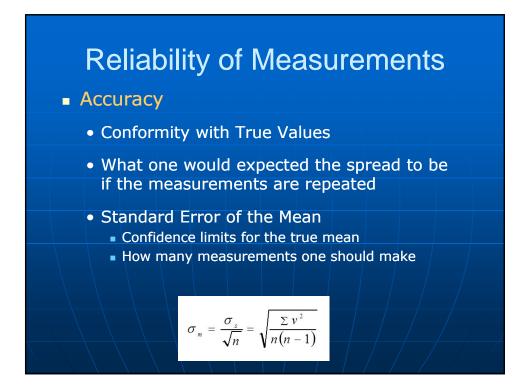


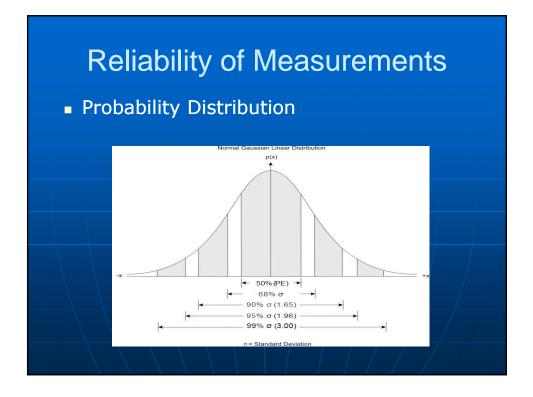

OrthoPhotos


Digital Image

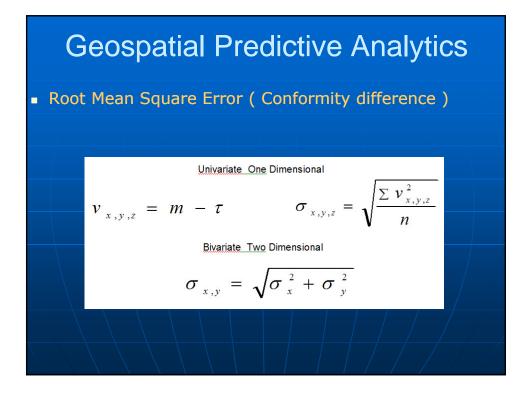

- Georeferencing
 - A geographic reference frame
 - World files tfw, jpw, bpw, etc
 - Affine Transformation
 - Line 1: A: x component of the pixel width (x-scale)
 - Line 2: D: y component of the pixel width (y-skew)
 - Line 3: *B*: x component of the pixel height (x-skew)
 - Line 4: *E*: y component of the pixel height (y-scale), almost always negative
 - Line 5: C: x-coordinate center of the upper left pixel
 - Line 6: F: y-coordinate center of the upper left pixel
 - Geotiffs more information

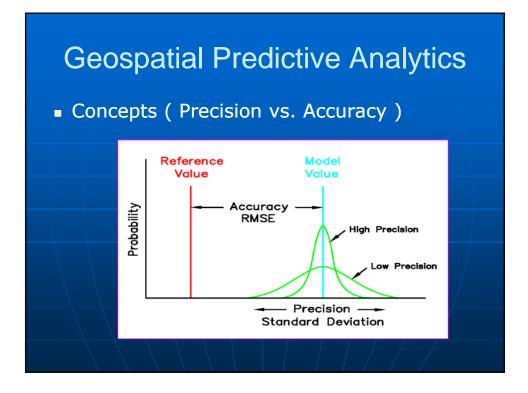


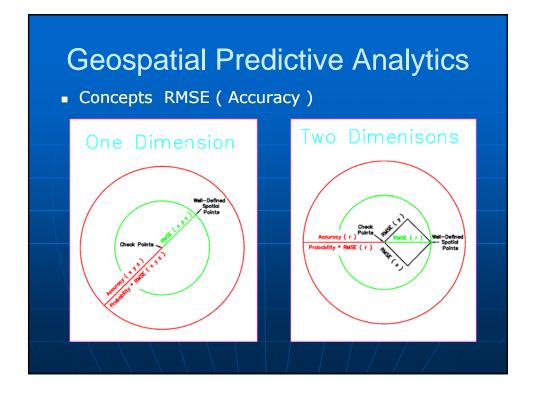

• Scale $S = f/H$
• C-Factor Cf = H / CI
• Relief Displacement $h = d * H / r_{2}, d = r_2 - r_1$
Scale Choice Horizontal vs Vertical Requirements
Scale map = Scale photo / Enlargement
Scale map = f / CI * C-factor
 End Lap Gain S * L * [(100 - End Lap %) / 100]
Side Lap Gain S * W * [(100 - Side Lap %) / 100]
 Min Number of Models (Length / End Gain) round up
 Min Photos per flight Line (Length / End Gain) round up + 1
 Min Number of flight Lines (Width / Side Lap Gain) round up
 Ground Control Vert = 3+1, Horiz = 2+1, MDL = 3 + 1
Target Size W= ps*0.002, Legs = 12*W



Reliability of	Meas	ureme	ents	
Probability Distribu	tion			
Confidence Inter	val of a	n expect	ed error	
Probability	Proba	bility Mult	iplier	
Confidence Interval	x	x,y	x,y,z	
68% Interval $\pm \sigma$	1.000	1.000	1.000	
90% Interval $\pm \sigma$ 95% Interval $\pm \sigma$		2.146 2.447		
99% Interval ± σ	3.000	3.035	3.368	






- Data models require accuracy assessment
- Common measure of model performance
 - Root Mean Square Error, RMSE

Square root of the average of the squares of the differences between predicted or measured values and actual or ground truth values

- Conformity difference analysis
- Draw backs
 - Sparse nature of the testing
 - What levels define completeness

Mapping Standards

- What is a Standard?
- Reference Point
- Uniform Engineering or Technical Criteria
- All Digital geospatial data and Mapping Manuscripts warrant a stated standard specification
- Deviation form a defined Standard requires Documentation and Justification

Mapping Standards

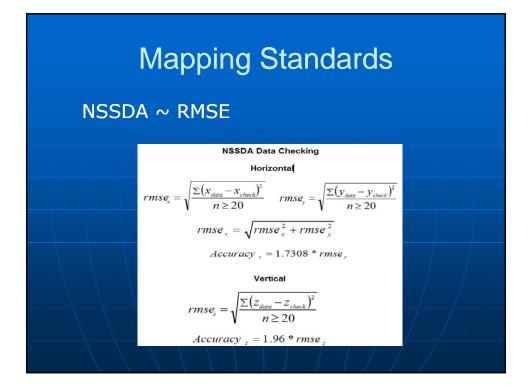
- National Map Accuracy (1947)
 - Circular Map Accuracy
 - Larger than 1:20,000 1/30
 - Smaller than 1:20,000 1/50
 - 1/2 contour
 - Data testing by producing agency
 - GCP's surveyed at a higher accuracy
 - Statement of Compliance
 - Based upon Paper manuscripts

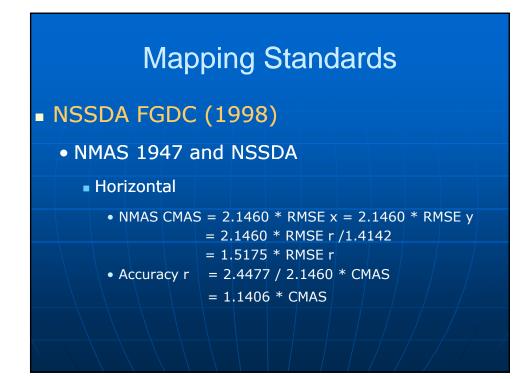
Mapping Standards

Photogrammetry for Highways Committee (1968)

- Modified NMAS
- 90% Planimetric 1/40", remainder 1/20"
- 90% ½ contour, remainder contour
- 90% spots ¼ contour, remainder ½ contour
- Data checking by producing agency
- GCP's surveyed at a higher accuracy
- Statement of compliance
- Based upon Paper manuscripts

Mapping Standards


ASPRS Standards (1990)


- Established limiting RSME based on ground distances
- Established 3 map Classes 1, 2 & 3
- Horizontal 1/100 mapping scale
- Vertical 1/3 contour interval
- Spots 1/6 contour interval
- Data checking optional,
- Minimum 20 points, designed to access critical areas
- GCP's surveyed at a higher accuracy
- Statement of compliance
- Base upon Published Scale and Graphical Contours


Mapping Standards

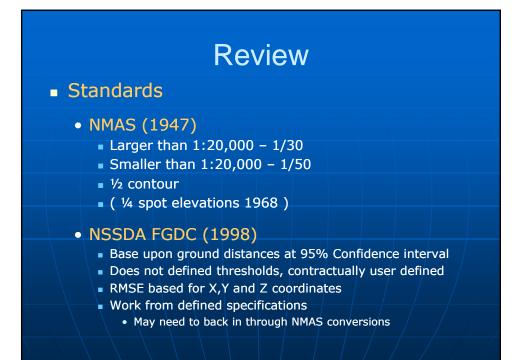
NSSDA FGDC (1998)

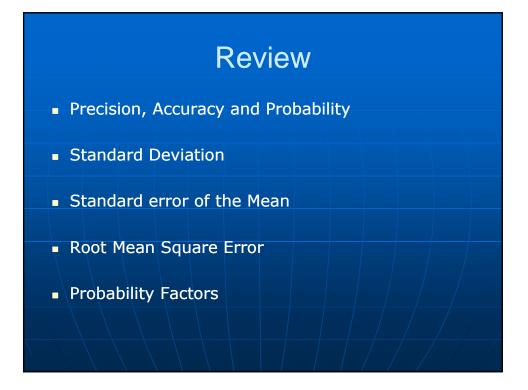
- National Standard for Spatial Data Accuracy
- Common methodology for reporting accuracy of horizontal and vertical points and positional values
- Base upon ground distances at 95% Confidence interval
- Does not defined thresholds, contractually user defined
- Applies to geodetic, geospatial, Engineering etc.
- Minimum of 20 points, designed to access critical areas
- Statement of compliance

Quality Review Metrics

Expectations

				GPS	GPS					
				Airborne	Airborne					
				Ground	Ground					
				Control	Control	GSD	A/T	A/T	A/T	A/T
				95%	95%	A/T	Expected	Expected	Estimated	Estimated
1.00			Max	2.4477	1.96	Accuracy	Accuracy	Accuracy	Accuracy	Accuracy
Ma	oping	Contour	Flying	1:10,000	~ 3 rd	xy	1/10,000	1/9,000	100 lp/mm	100 lp/mm
S	cale	Interval	Height	r	Z	1	1 o xy	10 z	σχγ	σΖ
100	FT	FT	FT	FT	FT	FT	FT	FT	FT	FT
_	30	0.50	1000	0.06	0.08	0.03	0.10	0.11	0.03	0.05
	30	0.50	1000	0.00	0.00	0.03	0.10	0.11	0.03	0.05
	60	1.00	2000	0.06	0.10	0.07	0.20	0.22	0.07	0.11
	00	2.00	4000	0.10	0.20	0.13	0.40	0.44	0.13	0.22
						1 10000				
	200	4.00	8000	0.10	0.40	0.26	0.80	0.89	0.26	0.44
	300	5.00	10000	0.10	0.40	0.33	1.00	1.11	0.33	0.55
	500	10.00	20000	0.10	0.40	0.66	2.00	2.22	0.66	1.09
			1					1	/ /	/


(Qua	lity	Rev	/iev	v M	etric	S
 Horizo 	ontal	Sta	ndard	S			
				NSSDA	NMAS		
			ASPRS	NMAS	1/30 MS	NSSDA	
			68%	68%	90%	95%	
		Max			2.146	2.4477	
	Mapping	Flying	RMSE	RMSE	CMAS	Accuracy	
	Scale	Height	r	r	ху	r	
	FT	FT			FT	FT	
	30	1000	0.42	0.66	1.00	1.14	
			0.42	0.00	1.00	1.14	
	60	2000	0.85	1.32	2.00	2.28	
	100	4000	1.42	2.20	3.34	3.81	
	200	8000	2.83	4.39	6.67	7.60	
	300	10000	4.24	6.59	10.00	11.41	
	600	20000	8.49	13.18	20.00	22.81	
	600	20000	0.49	13.18	20.00	22.81	


Quality Review Metrics

Vertical Standards

		ASPRS	ASPRS	NMAS	NMAS	NSSDA	NSSDA	
		Class 1	Class 1	90%	90%	68%	95%	
	Max	1/3 CI	1/6 CI	1/2 CI	1/4 CI	RMSE	Accuracy	
Contour	Flying	RMSE	RMSE				1.96	
Interval	Height	Z	Spot z	z	Spot z	Z	Z	
FT	FT	FT	FT	FT	FT	FT	FT	
0.50	1000	0.17	0.08	0.25	0.13	0.15	0.30	
1.00	2000	0.33	0.17	0.50	0.25	0.30	0.60	
2.00	4000	0.67	0.33	1.00	0.50	0.61	1.19	
4.00	8000	1.33	0.67	2.00	1.00	1.21	2.38	
5.00	10000	1.67	0.83	2.50	1.25	1.52	2.98	
10.00	20000	3.33	1.67	5.00	2.50	3.03	5.96	

Review
■ Scale S = f / H
C-Factor Cf = H / CI
• Relief Displacement $h = d * H / r_2, d = r_2 - r_1$
 Scale Choice Horizontal vs Vertical Requirements Scale map = Scale photo / Enlargement Scale map = f / CI * C-factor
End Lap Gain S * L * [(100 - End Lap %) / 100]
■ Side Lap Gain S * W * [(100 – Side Lap %) / 100]
Min Number of Models (Length / End Gain) round up
 Min Photos per flight Line (Length / End Gain) round up + 1
 Min Number of flight Lines (Width / Side Lap Gain) round
Ground Control Vert = 3+1 Horiz = 2+1
 Target Size W= ps*0.002, Legs = 12*W

